
Spot me if you can:
Uncovering spoken phrases in encrypted VoIP conversations

Charles V. Wright Lucas Ballard Scott E. Coull Fabian Monrose Gerald M. Masson
Johns Hopkins University

Department of Computer Science
Baltimore, MD USA 21218

{cvwright,lucas,coulls,fabian,masson}@jhu.edu

Abstract

Despite the rapid adoption of Voice over IP
(VoIP), its security implications are not yet fully un-
derstood. Since VoIP calls may traverse untrusted
networks, packets should be encrypted to ensure
confidentiality. However, we show that when the
audio is encoded using variable bit rate codecs, the
lengths of encrypted VoIP packets can be used to
identify the phrases spoken within a call. Our re-
sults indicate that a passive observer can identify
phrases from a standard speech corpus within en-
crypted calls with an average accuracy of 50%, and
with accuracy greater than 90% for some phrases.
Clearly, such an attack calls into question the effi-
cacy of current VoIP encryption standards. In ad-
dition, we examine the impact of various features of
the underlying audio on our performance and dis-
cuss methods for mitigation.

1 Introduction

Over the past few years, Voice over IP (VoIP)
has become an attractive alternative to more tradi-
tional forms of telephony. Naturally, with its in-
creasing popularity in daily communications, re-
searchers are continually exploring ways to im-
prove both the efficiency and security of this new
communication technology. Unfortunately, while

it is well understood that VoIP packets must be en-
crypted to ensure confidentiality [19], it has been
shown that simply encrypting packets may not be
sufficient from a privacy standpoint. For instance,
we recently showed that when VoIP packets are first
compressed with variable bit rate (VBR) encod-
ing schemes to save bandwidth, and then encrypted
with a length preserving stream cipher to ensure
confidentiality, it is possible to determine the lan-
guage spoken in the encrypted conversation [41].

As surprising as these findings may be, one
might argue that learning the language of the
speaker (e.g., Arabic) only affects privacy in a
marginal way. If both endpoints of a VoIP call
are known (for example, Mexico City and Madrid),
then one might correctly conclude that the language
of the conversation is Spanish, without performing
any analysis of the traffic. In this work we show
that the information leaked from the combination
of using VBR and length preserving encryption is
indeed far worse than previously thought. Specifi-
cally, we demonstrate that it is possible to spot ar-
bitrary phrases of interest within the encrypted con-
versation. Our techniques achieve far greater preci-
sion than one would expect, thereby rendering the
encryption ineffective.

At a high level, the success of our technique
stems from exploiting the correlation between the
most basic building blocks of speech—namely,
phonemes—and the length of the packets that a

VoIP codec outputs when presented with these
phonemes. Intuitively, to search for a word or
phrase, we first build a model by decomposing
the target phrase into its most likely constituent
phonemes, and then further decomposing those
phonemes into the most likely packet lengths.
Next, given a series of packet lengths that corre-
spond to an encrypted VoIP conversation, we sim-
ply examine the output stream for a subsequence
of packet lengths that match our model. Of course,
speech naturally varies for any number of reasons,
and so two instances of the same word will not
necessarily be encoded the same way. Therefore,
to overcome this, we make use of profile hidden
Markov models [7] to build a speaker-independent
model of the speech we are interested in finding.
Using these models we are then able to determine
when a series of packets is similar to what we
would expect given a set of phonemes.

As we show later, the approach we explore is
accurate, even in the face of very little information.
In this work we assume that an attacker only has
access to (1) the ciphertext she wishes to search,
(2) knowledge of the spoken language of the con-
versation (e.g., using the techniques in [41] she
may know this is a Spanish conversation), and (3)
statistics defining what phonemes are mapped to
what packet lengths by the VoIP codec. We ar-
gue that even the last assumption is realistic, as this
information can be readily gathered by an adver-
sary who can use the codec as a “black box” to
compress prerecorded speech. For example, in the
case of English, there are relatively few phonemes
and therefore it is plausible to assume that the at-
tacker can find sufficiently many instances of each
phoneme to generate realistic models. She can then
use these phonemes to construct models even for
words she has not seen before.

Our results show that an eavesdropper who has
access to neither recordings of the speaker’s voice
nor even a single utterance of the target phrase, can
identify instances of the phrase with average accu-
racy of 50%. In some cases, accuracy can exceed
90%. Clearly, any system that is susceptible to such
attacks provides only a false sense of security to
its users. We evaluate the effectiveness of our at-

tack under a variety of conditions to understand its
real-world implications. Additionally, we explore
methods to mitigate the information leaked from
encrypted VoIP.

The remainder of the paper is organized as fol-
lows. In Section 2 we overview how VBR encoding
works in VoIP and provide evidence of why we are
able to infer phonemes from packet lengths. In Sec-
tion 3 we discuss the requisite background for un-
derstanding profile HMMs, and how our search al-
gorithm works. Section 4 presents our experimen-
tal methodology and results, including an analysis
of how one might thwart our attack. We review re-
lated work in Section 5 and conclude in Section 6.

2 Background

In what follows, we briefly review the principles
of speech coding and speech recognition that are
most relevant to Voice over IP and to our attack.
In VoIP, connection setup and the transmission of
voice data are typically performed using separate
connections. The control channel operates using
a standard application-layer protocol like the Ses-
sion Initiation Protocol (SIP) [24], the Extensible
Messaging and Presence Protocol (XMPP) [25], or
an application-specific control channel like Skype
[30]. The voice data is typically transmitted as
a Real-time Transport protocol (RTP) [28] stream
over UDP, carrying a version of the audio that has
been compressed using a special-purpose speech
codec such as GSM [11], G.728 [34], or several
others.

Generally speaking, the codec takes as input the
audio stream from the user, which is typically sam-
pled at either 8000 or 16000 samples per second
(Hz). At some fixed interval, the codec takes the
n most recent samples from the input, and com-
presses them into a packet for efficient transmission
across the network. To achieve the low latency re-
quired for real-time performance, the length of the
interval between packets is typically fixed between
10 and 50ms, with 20ms being the common case.
Thus for a 16kHz audio source, we have n = 320
samples per packet, or 160 samples per packet for
the 8kHz case.

Figure 1. Basic CELP encoder

Many common voice codecs are based on a tech-
nique called code-excited linear prediction (CELP)
[27] (Figure 1). For each packet, a CELP encoder
simply performs a brute-force search over the en-
tries in a codebook of audio vectors to output the
one that most closely reproduces the original audio.
The quality of the compressed sound is therefore
determined by the number of entries in the code-
book. The index of the best-fitting codebook entry,
together with the linear predictive coefficients and
the gain, make up the payload of a CELP packet.
The larger code books used for higher-quality en-
codings require more bits to index, resulting in
higher bit rates and therefore larger packets.

In some CELP variants, such as QCELP [9],
Speex’s [35] variable bit rate mode, or the approach
advocated by Zhang et al. [42], the encoder adap-
tively chooses the bit rate for each packet in order
to achieve a good balance of audio quality and net-
work bandwidth. This approach is appealing be-
cause the decrease in data volume may be substan-
tial, with little or no loss in quality. In a two-way
call, each participant is idle roughly 63% of the
time [4], so the savings may be substantial. Unfor-
tunately, this approach can also cause substantial
leakage of information in encrypted VoIP calls be-
cause, in the standard specification for Secure RTP
(SRTP) [2], the cryptographic layer does not pad or
otherwise alter the size of the original RTP payload.

Intuitively, the sizes of CELP packets leak in-
formation because the choice of bit rate is largely
based on the audio encoded in the packet’s payload.
For example, the variable bit-rate Speex codec en-
codes vowel sounds at higher bit rates than frica-
tive sounds like “f” or “s”. In phonetic models of
speech, sounds are broken down into several differ-
ent categories, including the aforementioned vow-
els and fricatives, as well as stops like “b” or “d”,
and affricatives like “ch”. Each of these canonical
sounds is called a phoneme, and the pronunciation
for each word in the language can then be given as
a sequence of phonemes. While there is no con-
sensus on the exact number of phonemes in spo-
ken English, most in the speech community put the
number between 40 and 60.

13.6 16.6 17.6 20.6 23.8 24.6 27.8 34.2
Bit Rate (kbps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

il
it

y

Speex Bit Rate Probability Distribution

Fricative ‘f’
Consonant ‘k’
Vowel ‘aa’
Vowel ‘aw’

Figure 2. Distribution of bit rates used
to encode four phonemes with Speex

To demonstrate the relationship between bit rate
and phonemes, we encoded several recordings from
the TIMIT [10] corpus of phonetically-rich English
speech using Speex in wideband variable bit rate
mode, and observed the bit rate used to encode each
phoneme. The probabilities for 8 of the 21 possible
bit rates are shown for a handful of phonemes in
Figure 2. As expected, we see that the two vowel
sounds, “aa” and “aw”, are typically encoded at
significantly higher bit rates than the fricative “f”
or the consonant “k”. Moreover, large differences
in the frequencies of certain bit rates (namely, 16.6,

Figure 3. Packets for “artificial” Figure 4. Packets for “intelligence”

27.8, and 34.2 kbps), can be used to distinguish aa
from aw and f from k.

In fact, it is these differences in bit rate for
the phonemes that make recognizing words and
phrases in encrypted traffic possible. To illustrate
the patterns that occur in the stream of packet sizes
when a certain word is spoken, we examined the
sequences of packets generated by encoding sev-
eral utterances of the words “artificial” and “intel-
ligence” from the TIMIT corpus [10]. We repre-
sent the packets for each word visually in Figures 3
and 4 as a data image—a grid with bit rate on the
y-axis and position in the sequence on the x-axis.
Starting with a plain white background, we darken
the cell at position (x, y) each time we observe a
packet encoded at bit rate y and position x for the
given word. In both graphs, we see several dark
gray or black grid cells where the same packet size
is consistently produced across different utterances
of the word, and in fact, these dark spots are closely
related to the phonemes in the two words. In Fig-
ure 3, the bit rate in the 2nd - 5th packets (the “a”
in artificial) is usually quite high (35.8kbps), as we
would expect for a vowel sound. Then, in packets
12 - 14 and 20 - 22, we see much lower bit rates for
the fricative “f” and affricative “sh”. Similar trends
are visible in Figure 4; for example, the “t” sound
maps consistently to 24.6 kbps in both words.

In the next section we detail how an eavesdrop-

per who knows the phonetic transcription of her tar-
get phrase can compute the expected sequence of
packet sizes that will be transmitted when a VoIP
caller speaks the phrase. We also discuss how she
can use this sequence to recognize the phrase when
is spoken in a conversation.

3 Spotting Phrases with Profile HMMs

Our goal in this work is to recognize spoken
words or phrases in encrypted VoIP conversations,
using only minimal knowledge of what the actual
audio content of the phrase should sound like. In
fact, the techniques we develop here do not require
knowledge of the identity of the speaker or any
examples of the audio produced by speaking the
target word or phrase. However, for ease of ex-
position, we begin the discussion of our machine
learning techniques by first addressing a much
easier scenario, where the attacker does have ac-
cess to several recordings of the target phrase be-
ing spoken, though not necessarily by the target
speaker. Later, we show how these techniques can
be adapted to handle the more challenging case
where the attacker may have no recordings of the
words in the phrase she wishes to detect.

3.1 How to recognize a previously
seen word or phrase

If we assume that the same sequence of packet
sizes is produced each time a given word is spoken,
then the problem of identifying instances of that
word can be reduced to a substring matching prob-
lem. However, human speech is known to exhibit a
high degree of variability, and the adaptive com-
pression performed by the codec may contribute
additional variance to the resulting stream of packet
sizes. To handle this variation, we can instead ap-
ply matching algorithms from the speech recogni-
tion and bioinformatics communities. In both of
these areas, techniques based on hidden Markov
models [20] have proven to be also be extremely
useful [40, 7]—especially when the training data
itself may exhibit high variability.

In particular, the common bioinformatics prob-
lem of searching a protein database for fragments
of known protein families is similar in many ways
to searching a stream of packet sizes for instances
of a word or phrase. Proteins are made up of 20 dif-
ferent amino acids; in wideband mode, the Speex
codec produces 21 distinct packet sizes. There
may be significant variation between proteins in the
same family or between different utterances of the
same phrase. Therefore, in this paper, we adapt
profile hidden Markov model techniques [8], which
were originally developed for performing multi-
ple sequence alignment of protein families and for
searching protein databases [16], to the task of find-
ing words and phrases in encrypted VoIP. The gen-
eral outline of our strategy is as follows: (1) build
a profile HMM for the target phrase; (2) transform
the profile HMM into a model suitable for perform-
ing searches on packet sequences; and (3) apply
Viterbi decoding [37] on the stream of packets to
find subsequences of packets that match the profile.
We elaborate on each of these steps below.

Building a Profile HMM A profile HMM [7]
(Figure 5) consists of three interconnected chains
of states, which describe the expected packet
lengths at each position in the sequence of en-
crypted VoIP packets for a given phrase. The Match

Figure 5. Profile HMM [7]

states, shown in Figure 5 as squares, represent the
expected distribution of packet sizes at each posi-
tion in the sequence. Insert states, shown as dia-
monds, and Delete states, shown as circles, allow
for variations from the typical sequence. The Insert
states emit packets according to a uniform distribu-
tion or some other distribution that represents the
overall frequencies of packet sizes in VoIP streams,
and thus they allow for additional packets to be “in-
serted” in the expected sequence. Delete states are
silent, meaning that they simply transition to the
next state without emitting any packets; doing so
allows for packets that are normally present to be
omitted from the sequence. Initially, the Match
states’ emission probabilities are set to a uniform
distribution over packet sizes, and the transition
probabilities in the model are set so as to make the
Match states the most likely state in each position.

Given an initial model and a set of example se-
quences of packets for the target phrase, there is
a well-known Expectation-Maximization [5] algo-
rithm due to Baum and Welch [3] that uses dynamic
programming to iteratively improve the model’s pa-
rameters to better represent the given training se-
quences. This algorithm is guaranteed to find a
locally optimal set of parameters that maximizes
the likelihood of the model given the training se-
quences. Unfortunately, parameters chosen via this
method are not guaranteed to be globally optimal,
and often the difference between local optima and
the global optimum is substantial. Therefore, we
apply simulated annealing [15] in the Baum-Welch
algorithm to decrease the risk of not progressing
out of a local optimum. After this algorithm has
converged, we apply Viterbi training [38] to the re-

Figure 6. Search HMM [7]

sulting model to further refine its parameters for use
in searching streams of packets for the given target
phrase. While this last step is not guaranteed to find
an optimal set of parameters, it does maximize the
contribution of the most likely sequences of states
to the model’s likelihood, and it is widely used in
bioinformatics applications for training the models
used in searching protein databases [7].

Searching with a Profile HMM In an encrypted
VoIP call, packets for the target phrase will be sur-
rounded by packets that comprise the rest of the
conversation. To isolate the target phrase from its
surroundings, we add 5 new states to the standard
profile HMM to create a search HMM (Figure 6).
The most important new state is the Random state,
shown in Figure 6 as a diamond because it, like the
Insert states, emits packets according to a uniform
or other “random” distribution. When we search
a stream of packets, the Random state will match
packets that are not part of the phrase of interest,
and the states in the profile part of the model will
match the packets in the target phrase. Two new
silent states, called the Profile Start and Profile End
states, are shown in Figure 6 as circles. They al-
low for transitions between the Random state and
the profile part of the model. Because we want
to find only instances of the entire target phrase,
transitions from the Profile Start state are weighted
such that the transition to the Match state in the first

position is much more likely than the others.
To find instances of our target phrase in the se-

quence of packets from a VoIP conversation, we use
the Viterbi algorithm [37] to find the most likely
sequence of states in the model to explain the ob-
served packet sizes. Each subsequence of states
which belong to the profile part of the model is
called a hit, and is potentially an instance of the tar-
get phrase. To evaluate the goodness of each hit, we
compare the likelihood of the packet lengths given
the profile model, versus their likelihood under the
overall distribution from the Random state. More
formally, we calculate the log odds score for a hit
consisting of packet lengths !i, ..., !j , as

scorei,j = log
P (!i, ..., !j |Profile)
P (!i, ..., !j |Random)

(1)

Intuitively, this score tells us how well the pack-
ets match our model, and we discard any hit whose
score falls below a given threshold. We return to
how to set these thresholds in Section 4.

3.2 Recognizing phrases without
example utterances

In the previous section, we made the simplify-
ing assumption that the adversary could build her
models using several audio recordings of each word
or phrase she wanted to detect. However, in prac-
tice, this assumption is far from realistic. Because
of the distribution of words in natural language,
even in very large corpora, there will be many
words that occur only a few times, or not at all.
The speech recognition community has developed
efficient techniques for constructing word models
without the need for labeled training examples of
every word. In this section, we show how simi-
lar strategies can be applied to our task of spotting
words in encrypted VoIP, even when the eavesdrop-
per has never actually heard any of the words in the
target phrase.

The techniques in this section rest on the idea
that all spoken words in a language are formed by
concatenating phonemes, much like words in writ-
ten language are formed by making strings of let-
ters. In a phonetic acoustic model of speech (c.f.,

Chapter 3 of [12]), small, profile-like HMMs are
trained to represent the sounds that correspond to
each phoneme. Then, to construct a word HMM,
the HMMs for the phonemes used to pronounce
the word are concatenated to form a long, profile-
like chain of states that represents the sequence of
sounds in the word. Similarly, phrase HMMs are
constructed by concatenating word models. Typi-
cally, the sequence of phonemes used to pronounce
each word is taken from a phonetic pronunciation
dictionary such as [14], although they may also be
taken from the pronunciatons given in a standard
English dictionary. Because these pronunciation
dictionaries are relatively easy to create and can
be stored as plain text files, it is much easier and
cheaper to obtain a large-vocabulary pronunciation
dictionary than to obtain a corpus of speech record-
ings for the same words.

Building phrase models from phonemes One
straightforward method for building our word and
phrase models from phonemes would be to train
a profile HMM for the packets produced by each
phoneme, and then concatenate phoneme models in
the proper order to construct word HMMs. Phrase
HMMs could be similarly constructed by concate-
nating word HMMs. The main shortcoming of this
technique is that words often have several different
possible pronunciations. These differences could
be attributed to variation between dialects or be-
tween individual speakers, or because of the con-
text of the surrounding words.

Instead, to build our models, we use a heuris-
tic that simultaneously retains the simplicity and
efficiency of the basic profile HMM topology and
the techniques outlined in the previous section, yet
captures a wide range of pronunciations for each
word. This novel approach affords us great flex-
ibility in finding an essentially unlimited number
of phrases. We use a phonetic pronunciation dic-
tionary, together with a library of examples of the
packet sequences that correspond to each phoneme,
to generate a synthetic training set for the phrase in
question. Then, using this synthetic training set in
place of actual instances of the phrase, we can train
a profile HMM and use it to search VoIP conversa-

tions just as described in Section 3.1.
To generate one synthetic sequence of packets

for a given phrase, we begin by splitting the phrase
into a list of one or more words. For each word
in the list, we replace it with the list of phonemes
taken from a randomly-selected pronunciation of
the word from our phonetic pronunciation dictio-
nary. For example, given the phrase “the bike”, we
look up “the” and “bike” in our pronunciation dic-
tionary and get the phonemes “dh ah” and “b ay k”,
giving us a sequence of 5 phonemes: “dh, ah, b, ay,
k”. Then, for each of the phonemes in the resulting
list, we replace it with one example sequence of
packets sizes taken from our library for the given
phoneme.

Improved Phonetic Models Because the sounds
produced in a phoneme can vary significantly de-
pending on the phonemes that come immediately
before and immediately after, it is essential that we
estimate packet distributions based on the diphones
(pairs of consecutive phonemes) or triphones (three
consecutive phonemes), rather than the individual
phonemes in the phrase. To do so, we start by
grouping the phonemes in the phrase into groups of
three, so that the triphones overlap by one phoneme
on each end. So, for example, from our sequence
of phonemes

dh, ah, b, ay, k

we get the triphones

(dh, ah, b), (b, ay, k)

We then check the resulting list of triphones to
make sure that we have sufficient examples in our
library for each triphone in the list. If the library
contains too few examples of one of the triphones,
we split it into two overlapping diphones. So, in
our example, if we have no examples of the tri-
phone (dh, ah, b), we replace it with the diphones
(dh, ah) and (ah, b), giving us the sequence

(dh, ah), (ah, b), (b, ay, k)

Similarly, we replace any diphones lacking suffi-
cient training data with single phonemes. As this
small example illustrates, this technique allows us

Figure 7. Overview of training and detection process

to use a better phonetic model, using triphones, for
sequences of phonemes for which we have several
examples in our library, yet allows a great deal of
flexibility for combinations of words or sounds that
we have not seen before. For instance, if the train-
ing corpus in our example does not contain “the
bike”, but it does have examples of people saying
“the” (dh, ah), “a bird” (ah, b, er, d), and “bicam-
eral” (b, ay, k, ae, m, ax, r, ax, l), we can still derive
a good model for the packets that will occur when
a VoIP caller says “the bike”.

Putting it all together To identify a phrase with-
out using any examples of the phrase or any of
its constituent words, we apply this concatenative
synthesis technique to generate a few hundred syn-
thetic training sequences for the phrase. We use
these sequences to train a profile HMM for the
phrase and then search for the phrase in streams
of packets, just as in the previous section. An
overview of the entire training and detection pro-
cess is given in Figure 7.

4 Evaluation

To evaluate our phrase spotting technique, we
focus our efforts on assessing the impact of various
features of the underlying audio on phrase spotting
performance, and examine the ability of an attacker
to detect the presence of phrases in an encrypted
packet stream. In our experiments, we use audio
recordings from the TIMIT continuous speech cor-
pus [10], one of the most widely used corpora in the
speech recognition community. The TIMIT corpus

contains 6,300 phonetically rich English sentences
spoken by a total of 630 people—462 speakers ran-
domly selected by the corpus’ creators as a training
set and the remaining 168 speakers designated as a
test set. Speakers in the data set include males and
females with eight distinct regional dialects from
across the continental United States. Both the test
and training sets include all gender and region com-
binations.

One of the most appealing features of TIMIT for
our evaluation is that it includes time-aligned pho-
netic transcriptions of each sentence, denoting the
start and end of each phoneme. After encoding the
audio in the training set with Speex in wideband
VBR mode, we use these phonetic transcriptions
to build our library of packet sequences that corre-
spond to each phoneme, diphone, and triphone in
the training set.

Experimental Setup To evaluate the effective-
ness of our phrase spotting techniques, we use the
TIMIT training data to build HMMs to search for
122 target sentences. We simulate VoIP conversa-
tions for each of the speakers in the TIMIT test set
by taking two copies of each of the speaker’s sen-
tences, and concatenating all of them in a random
order. We create five of these simulated conversa-
tions for each speaker to minimize any impact of
the sentences’ location in the conversation on the
performance of our algorithms.

We then encode the simulated conversations
with wideband Speex in VBR mode and use the
HMMs to search for instances of each phrase
in the resulting stream of packet lengths. From

the Viterbi alignment of the packet lengths to the
phrase HMM, we get the subsequence(s) of pack-
ets indicating potential hits for the phrase, with log
odds scores for each. Subsequences with scores
above a given threshold are considered definitive
hits, and each hit is labeled as a true positive only
if it contains all of the words for the given phrase.
Any definitive hit which does not contain all words
in the phrase is considered a false positive.

We adapt standard metrics from the informa-
tion retrieval community to assess the effective-
ness of our approach. Let TPt, FPt, and FNt

be the number of true positives, false positives,
and false negatives achieved when operating with
threshold t. Then, the precision at t is defined as
prect = TPt/(TPt +FPt) and measures the prob-
ability that a reported match is correct. We also
use recall, defined as recallt = TPt/(TPt +FNt),
as the probability that the algorithm will find the
phrase if the phrase is indeed contained within the
ciphertext. Ideally a search algorithm would ex-
hibit precision and recall close to 1.0.

To assess the accuracy of our approaches under
different parameters, we compute recall and preci-
sion over a variety of thresholds. An intuitive way
to derive the threshold for a given model would be
to use the average log odds score (Equation 1) of
the training sequences. However, since the log odds
score is proportional to the length of the phrase, we
cannot directly compare the performance of mod-
els for different phrases at the same log odds score.
Therefore, to compare accuracy between models
for different phrases, we set the threshold for each
model to be some fraction of the model’s log odds
score observed during training . Explicitly, for each
phrase p, let σp be the average log odds score for
the model mp. σp will be proportional to the length
of mp. For a multiplier δ ∈ [0, 2] we set the testing
threshold tp = δ×σp, and compute the average pre-
cision and recall at multiplier δ using TPtp , FPtp ,
and FNtp for each phrase p in our testing set. We
can then examine how precision relates to recall by
plotting average precision versus average recall at
each value of δ (see, for example Figures 8–9).

With these comparison metrics at hand, we can
now proceed to analyze the accuracy of our ap-

proach. First, we take an analytical approach and
examine our performance over a range of thresh-
olds to study the impact of the pronunciation dic-
tionary and of noise in the audio channel on our
ability to spot phrases. Then, we assume the view-
point of an attacker and empirically estimate a spe-
cific threshold for each phrase. Finally, we dis-
cuss strategies for mitigating the information leak-
age that enables the attack.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

isi
on

Recall

Recall v. Precision (by Pronunciation Dictionary)

Empirical Pronunciation Dictionary
TIMIT Pronunciation Dictionary

Figure 8. Comparing the performance
of pronunciation dictionaries

The Importance of Accurate Pronunciations
In order to build a model for a phrase, we first must
know the phonemes that comprise the phrase. Al-
though TIMIT includes a primitive pronunciation
dictionary, with pronunciations given for each word
in the corpus, the included pronunciations were
originally taken from an old version of Merriam-
Webster’s Pocket Dictionary, and thus may repre-
sent “proper” American English rather than realis-
tic colloquial speech. Therefore, we also use the
phonetic transcriptions for the training sentences to
build up an empirically-derived pronunciation dic-
tionary based on the way the speakers say each
word in the training data. For increased coverage
in our empirical dictionary, we also include pro-
nunciations from the PRONLEX dictionary, which
were derived in a similar fashion from the CALL-
HOME telephone speech corpus [14]. We compare
the accuracy of our search HMM using these two

pronunciation dictionaries and present the results
in Figure 8.

Clearly, the quality of the pronunciation dictio-
nary is critical to the success of our phrase spot-
ting technique. With the default TIMIT pronun-
ciations, we achieve equal recall and precision at
around 0.28. However, using the more realistic pro-
nunciation dictionary, we simultaneously achieve
recall of 0.50 and precision of 0.51. In other words,
we are able to find, on average, 50% of the in-
stances of the phrases of interest, and when the al-
gorithm indicates a match, there is a 51% chance
that the flagged packets do indeed encode the given
phrase. These results are especially disconcerting
given that the conversation was encrypted in or-
der to prevent an eavesdropper from recovering this
very information. In light of these results, we per-
form the remaining experiments using our the em-
pirically derived pronunciation dictionary.

Robustness to Noise We also evaluate the im-
pact of noise on our ability to identify phrases. For
this test, we add pink noise to the simulated con-
versations in the TIMIT test data. We chose pink
noise, rather than white noise, or any number of
background sounds (metal pots and pans clanging,
a baby crying, etc.), because the energy is logarith-
mically distributed across the range of human hear-
ing. This makes pink noise much more difficult for
the codec’s noise removal algorithm to filter, and
therefore should influence the choice of bit rates in
the packets. Furthermore, the use of such additive
noise generation techniques is common practice for
exploring the impact of noise on speech recognition
methods (e.g., [33, 17, 13]).

We experimented with three additive noise sce-
narios: 90% sound to 10% noise, 75% to 25%, and
50% to 50%. With 10% noise, the recordings sound
as if they were transmitted over a cell phone with
poor reception, and with 50% noise it is almost im-
possible for a human to determine what is being
said. Figure 9 shows the results for these exper-
iments. Notice that with 10% noise, we are still
able to achieve recall of .39 and precision of .40.
Even with 25% noise, we can still achieve recall
and precision of .22 and .23, respectively. These

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

isi
on

Recall

Recall v. Precision (Impact of Noise)

Overall
10%
25%
50%

Figure 9. Results with noisy data

results show that as long as the quality of the voice
channel is reasonable, the attacker can identify an
alarming number of phrases.

An Attacker’s Point of View Until now, we
studied the success of our techniques across a wide
range of thresholds. An attacker, on the other hand,
would need to pick a single threshold in advance.
Unfortunately for the attacker, picking an optimal
threshold in such cases is a challenging problem.
Therefore, to explore the problem of threshold se-
lection, we discuss a technique to estimate a good
threshold, and the resulting expected performance.

As mentioned earlier, for a phrase p, the aver-
age log odds score σp that is observed during the
training of model mp is roughly indicative of how
well the model will be able to perform in practice.
Loosely speaking, if σp is large, then the model will
exhibit high true positive rates. We use this obser-
vation to our advantage when selecting the attack
threshold tp. That is, we empirically estimate tp
as a linear function of σp, setting tp = δp × σp,
where δp is a multiplier that maximizes the “qual-
ity” of the search algorithm. To complete our task
of selecting a threshold we must then solve two
problems: (1) select a general function that defines
the “quality” of the search algorithm at a specific
threshold; and (2) choose a way to estimate the δp

that maximizes quality.
While we could define the “quality” at thresh-

old t as either recallt or precisiont, neither metric

is appropriate for this task. Instead, to achieve a
good balance of precision and recall, we define the
quality of a search algorithm at threshold t to be
the difference between the number of true positives
and the number of false positives at t: TPt − FPt.

If the adversary has access to a relatively small
number of recorded phrases, she can build search
HMMs for them and use the performance of these
models to derive a good value of δ for use in set-
ting the thresholds for other phrases that she really
wants to search for. We use leave-out-k cross vali-
dation to estimate her chances of success using the
TIMIT testing data. In each of several iterations,
we select k phrases (p̃1, . . . , p̃k) at random from the
testing set and find the thresholds tp̃1 , . . . , tp̃k that
maximize the difference in true positives and false
positives for each phrase. We set δp̃i = tp̃i/σp̃i for
each i ∈ [1, k], and set δ to be the average over
δp̃i . Then, for each phrase p in the remainder of the
test set, we estimate our maximizing threshold for
p to be tp = δ × σp, and calculate the recall and
precision for phrase p at threshold tp.

Figure 10. Attacker’s performance

Setting k to be 1/4 of our testing set, this tech-
nique achieves mean recall and precision rates of
(.32, .75). Given that our original averages were
(.50, .51), it seems that our estimation technique
is somewhat conservative, selecting thresholds that
are higher than optimal. The values of recall
and precision achieved for each phrase, using our
threshold selection algorithm, are presented in Fig-

ure 10. Each of the points denotes the recall and
precision for one of the 122 phrases in our test set.
Because simple scatter plots often plot many points
on top of one another, we also vary the background
color to indicate the density of the points in each
area of the graph. Dark backgrounds indicate high
density, and light backgrounds indicate areas of low
density. While this algorithm is not optimal, its re-
call is often above 40%, and we can recognize most
of the phrases with precision greater than 80%. We
believe this shows concretely that an attacker with
access to only population statistics and the cipher-
text of a VBR encoded and encrypted VoIP conver-
sation has almost a one in three chance of finding a
phrase of her choice!

Analysis of Results While our approach per-
forms well on average, there are also several
phrases that we can find with great accuracy. Fig-
ure 11 shows precision and recall for four inter-
esting phrases. We exhibited the highest accu-
racy when searching for the phrase “Young children
should avoid exposure to contagious diseases.”.
For this phrase, our technique achieves a precision
of 1.0 and a recall of .99. We also perform well
on the phrase “The fog prevented them from ar-
riving on time.”, achieving .84 precision and .72
recall. These results illustrate the success of our
technique in identifying words and phrases we have
never seen before, as neither occurs in our train-
ing set. Also noteworthy are phrases “She had
your dark suit in greasy wash water all year.” and
“Don’t ask me to carry an oily rag like that.” which
were the only two phrases spoken by every user in
the TIMIT database. We achieve precision/recall
scores of (.90/.82) and (.92/.81), respectively.

Naturally, given that we are searching for
phrases in encrypted audio traffic, identifying
each phrase exactly can be extremely challenging.
Sometimes, when our search model misses an in-
stance of the target phrase, it only misses one or
two of the words at the beginning or at the end of
the phrase. Because our very strict definition of a
true positive excludes such hits, it may underesti-
mate the practical performance of our technique.
When we designate hits that contain at least n − 2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

Recall v. Precision

Young children...
Don’t ask me...
She had your...

The fog...

Figure 11. Performance on selected
phrases

of the n words in the phrase as true positives, the
algorithm’s recall and precision improve to .55 and
.53, respectively. Compared to our original, stricter
classification, this represents improvement of 9%
in recall and 4% in precision.

To identify other causes of the differences in ac-
curacy between phrases, we examined several fea-
tures of the phrases, including their length, pho-
netic composition, and the distribution of packet
sizes for the words and phonemes in the phrase. In-
terestingly, we found no statistically significant cor-
relation between recognition accuracy and the fre-
quency of any of the phonemes. Given that TIMIT
was designed as a phonetically rich corpus, we be-
lieve this shows that our technique is robust and
flexible enough to handle the vast majority of words
in spoken English.

According to our analysis, the most important
factors in determining our ability to recognize a
given phrase in the TIMIT data are: (1) the length
of the phrase in packets, and (2) the individual
speakers who spoke the phrase. Short phrases are
difficult to spot reliably because it is much more
likely that short patterns of packets will occur ran-
domly in other speech. Therefore, as the length
of the phrase increases, the number of false posi-
tives from the search HMM decreases and the de-
tector’s precision increases. Our detector achieves
its best results on phrases that are at least 3 seconds

in length.
The most important factor in determining our

detector’s recall was not one which we initially an-
ticipated. It appears that there are some speakers
in the dataset whom we can recognize with great
accuracy, and some with whom we have more diffi-
culty. Our technique for synthesizing training data
for the profile HMM does not seem to accurately
predict the way everyone speaks. To see the vari-
ability in our performance across the 168 speakers
in the test set, we computed the attacker’s true pos-
itive rate for each speaker s in the test set, as the
fraction of utterances from s that our algorithm de-
tects. The median true positive rate for speakers is
63%, and for about 20% of the speakers the true
positive rate is below 50%. When a phrase happens
to be spoken by several users for whom our synthe-
sis techniques do not work well, our true positive
rate for the phrase suffers as well. This impacts
both precision and recall, because the true positive
rate factors strongly in both measures.

Techniques for Mitigation One way to prevent
word spotting would be to pad packets to a com-
mon length, or at least to coarser granularity. To ex-
plore the tradeoff between padding and search ac-
curacy, we encrypted both our training and testing
data sets to multiples of 128, 256 or 512 bits and
applied our approach. The results are presented in
Figure 12. The use of padding is quite encourag-
ing as a mitigation technique, as it greatly reduced
the overall accuracy of the search algorithm. When
padding to multiples of 128 bits, we achieve only
0.15 recall at 0.16 precision. Increasing padding
so that packets are multiples of 256 bits gives a re-
call of .04 at .04 precision. That said, padding to
128, 256, and 512 bit blocks results in overheads
of 8.81%, 16.5%, and 30.82%, respectively. These
bandwidth estimates are likely lower than the over-
head incurred in practice, because as Chu notes [4],
in a two-way call each participant is idle 63% of the
time, which would allow the transmission of many
smaller packets. However, our testing is comprised
of continuous speech, and so the smaller packets
that indicate silence are less prevalent.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

isi
on

Recall

Recall v. Precision (The Effect of Padding)

No Padding
128 Bits
256 Bits
512 Bits

Figure 12. Robustness to padding

5 Related Work

In 1982, Simmons and Holdridge [29] high-
lighted the shortcomings of an early design for en-
crypting voice traffic using a semantically-insecure
version of RSA. More recently, the increasing pop-
ularity of Internet telephony has encouraged sev-
eral studies of VoIP and security. Wang et al. [39]
proposed a method of tracking VoIP calls across
anonymizing networks, like ToR [6], through the
use of packet timing as a watermark. Verscheure
et al. [36] then presented an entirely passive method
for identifying the endpoints of an anonymized
VoIP call by observing patterns in the packet
stream due to the encoder’s voice activity detec-
tion. Work by Pelaez-Moreno et al. [18] and Ag-
garwal et al. [1] has examined the problem of
speech recognition from compressed VoIP. Finally,
we have shown in earlier work that it is possible
to identify the language spoken by the callers in a
VoIP conversation using only the sizes of the en-
crypted packets [41].

Additionally, there is a growing body of work
focusing on inference of sensitive information from
encrypted network connections using packet sizes
and timing information. Sun et al. [32] have shown
that it is possible to identify web pages travers-
ing encrypted HTTP connections (e.g., SSL) using
only the number and size of the encrypted HTTP
responses. More recently, Saponas et al. [26] pro-

posed a method to identify videos played over an
encrypted network channel using the total size of
the packets transmitted in a short window of time.
Packet inter-arrival times have been used to infer
keystrokes within encrypted SSH sessions [31].

The techniques presented in this paper are heav-
ily influenced by the speech recognition commu-
nity and its established methods for wordspotting.
The most widely accepted method of wordspot-
ting in continuous speech data takes advantage of
hidden Markov models (HMMs) trained on acous-
tic features of complete words (e.g., [22, 40]), or
the composition of phonemes into words (e.g., [21,
23]). For HMMs trained on whole-word acoustic
data, detection rates can reach upwards of 95%, but
such approaches are inherently limited to relatively
small vocabularies where there is an abundance of
training data available for each word. On the other
hand, phonetically-trained acoustic HMMs are able
to spot any word based solely on its phonetic tran-
scription and acoustic data for the phonemes. How-
ever, detection rates for these phoneme-based sys-
tems tend to fall to between 75% and 85% due
to the difficulty of capturing word-specific pro-
nunciation variability. At a high level, our VoIP
phrase spotting technique uses phonetically-trained
HMMs, but the specifics of their use are drastically
different from that of typical speech since we do not
have access to the underlying acoustic data. De-
spite the coarse nature of the information gained
from encrypted VoIP packet sizes, the performance
of our approach is not significantly worse than that
of early wordspotting methods in speech.

6 Conclusion

Previous work has shown that combining VBR
compression with length-preserving encryption
leaks information about VoIP conversations [41].
In this paper, we show that this information leak-
age is far worse than originally thought. Our re-
sults indicate that a profile hidden Markov model
trained using speaker- and phrase-independent data
can detect the presence of some phrases within en-
crypted VoIP calls with recall and precision exceed-
ing 90%. On average, our method achieves recall of

50% and precision of 51% for a wide variety pho-
netically rich phrases spoken by a diverse collec-
tion of speakers. Moreover, we examine the impact
of noise, dictionary size, and word variation on the
performance of our techniques.

The results of our study show that an attacker
can spot a variety of phrases in a number of real-
istic settings, and underscores the danger in using
the default encryption transforms of the SRTP pro-
tocol – none of which specify the use of padding
[2]. Although padding could introduce inefficien-
cies into real-time protocols, our analysis indicates
that it offers significant confidentiality benefits for
VoIP calls. An important direction of future work
focuses on the development of padding techniques
that provide an appropriate balance between effi-
ciency and security.

Acknowledgements

This work was funded in part by NSF grants
CNS-0546350 and CNS-0430338.

References

[1] C. Aggarwal, D. Olshefski, D. Saha, Z. Y. Shae,
and P. Yu. Csr: Speaker recognition from com-
pressed VoIP packet stream. In Proceedings of the
IEEE International Conference on Multimedia and
Expo, 2005, pages 970–973, July 2005.

[2] M. Baugher, D. McGrew, M. Naslund, E. Carrara,
and K. Norrman. The secure real-time transport
protocol (SRTP). RFC 3711.

[3] L. E. Baum, T. Petrie, G. Soules, and N. Weiss.
A maximization technique occurring in the statisti-
cal analysis of probabilistic functions of Markov
chains. Annals of Mathematical Statistics,
41(1):164–171, February 1970.

[4] W. C. Chu. Speech Coding Algorithms. John Wiley
and Sons, 2003.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety, 39(1):1–38, 1977.

[6] R. Dingledine, N. Mathewson, and P. Syverson.
Tor: The second-generation onion router. In Pro-
ceedings of the 13th USENIX Security Symposium,
pages 303–320, August 2004.

[7] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchi-
son. Biological Sequence Analysis : Probabilistic
Models of Proteins and Nucleic Acids. Cambridge
University Press, 1999.

[8] S. Eddy. Multiple alignment using hidden Markov
models. In Proceedings of the Third International
Conference on Intelligent Systems for Molecular
Biology, pages 114–120, July 1995.

[9] W. Gardner, P. Jacobs, and C. Lee. QCELP: A vari-
able bit rate speech coder for CDMA digital cel-
lular. Speech and Audio Coding for Wireless and
Network Applications, pages 85–92, 1993.

[10] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G.
Fiscus, D. S. Pallett, N. L. Dahlgren, and V. Zue.
TIMIT acoustic-phonetic continuous speech cor-
pus. Linguistic Data Consortium, Philadelphia,
1993.

[11] Global System for Mobile communications.
http://www.gsmworld.com/index.
shtml.

[12] F. Jelinek. Statistical Methods for Speech Recog-
nition. MIT Press, 1998.

[13] J. C. Junqua, B. Mak, and B. Reaves. A robust
algorithm for word boundary detection in the pres-
ence of noise. IEEE Transactions on Speech and
Audio Processing, 2(3):406–412, 1994.

[14] P. Kingsbury, S. Strassel, C. Lemore, and R. Mac-
Intyre. CALLHOME american english lexi-
con (PRONLEX). Linguistic Data Consortium,
Philadelphia, 1997.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, May 1983.

[16] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and
D. Haussler. Hidden Markov Models in computa-
tional biology: Applications to protein modeling.
Journal of Molecular Biology, 235(5):1501–1531,
February 1994.

[17] S. Okawa, E. Bocchieri, and A. Potamianos. Multi-
band speech recognition in noisy environments.
In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing,
1998, 1998.

[18] C. Pelaez-Moreno, A. Gallardo-Antolin, and F. D.
de Maria. Recognizing voice over IP: A ro-
bust front-end for speech recognition on the World
Wide Web. IEEE Transactions on Multimedia,
3(2):209–218, June 2001.

[19] N. Provos. Voice over misconfigured internet tele-
phones. http://vomit.xtdnet.nl.

[20] L. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), February 1989.

[21] J. R. Rohlicek, P. Jeanrenaud, K. Ng, H. Gish,
B. Musicus, and M. Siu. Phonetic training and lan-
guage modeling for word spotting. In Proceedings
of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1993, 1993.

[22] J. R. Rohlicek, W. Russell, S. Roukos, and H. Gish.
Continuous hidden Markov modeling for speaker-
independent wordspotting. In Proceedings of
the IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1989, pages 627–
630, 1989.

[23] R. C. Rose and D. B. Paul. A hidden Markov model
based keyword recognition system. In Proceedings
of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1990, pages
129–132, 1990.

[24] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: Session initiation protocol.
RFC 3261.

[25] P. Saint-Andre. Extensible messaging and presence
protocol (XMPP): Core. RFC 3920.

[26] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal,
and T. Kohno. Devices that tell on you: Pri-
vacy trends in consumer ubiquitous computing. In
Proceedings of the 16th Annual USENIX Security
Symposium, pages 55–70, August 2007.

[27] M. R. Schroeder and B. S. Atal. Code-excited lin-
ear prediction(CELP): High-quality speech at very
low bit rates. In Proceedings of the 1985 IEEE In-
ternational Conference on Acoustics, Speech, and
Signal Processing, volume 10, pages 937–940,
April 1985.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-
cobson. RTP: A transport protocol for real-time
applications. RFC 1889.

[29] G. J. Simmons and D. Holdridge. Forward search
as a cryptanalytic tool against a public key privacy
channel. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 117–128, 1982.

[30] Skype. http://www.skype.com.
[31] D. Song, D. Wagner, and X. Tian. Timing analy-

sis of keystrokes and SSH timing attacks. In Pro-
ceedings of the 10th USENIX Security Symposium,
August 2001.

[32] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell,
V. N. Padmanabhan, and L. Qiu. Statistical identi-
fication of encrypted web browsing traffic. In Pro-

ceedings of the IEEE Symposium on Security and
Privacy, pages 19–30, May 2002.

[33] S. Tibrewala and H. Hermansky. Sub-band based
recognition of noisy speech. In Proceedings of
the IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1997, pages 1255–
1258, 1997.

[34] I. T. Union. Coding of speech at 16kbit/s using
low-delay code excited linear prediction, Septem-
ber 1992.

[35] J.-M. Valin and C. Montgomery. Improved noise
weighting in CELP coding of speech - applying the
Vorbis psychoacoustic model to Speex. In Audio
Engineering Society Convention, May 2006. See
also http://www.speex.org.

[36] O. Verscheure, M. Vlachos, A. Anagnostopoulos,
P. Frossard, E. Bouillet, and P. S. Yu. Finding who
is talking to whom in voip networks via progres-
sive stream clustering. In Proceedings of the Sixth
International Conference on Data Mining, pages
667–677, December 2006.

[37] A. J. Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algo-
rithm. IEEE Transactions on Information Theory,
IT-13:260–267, 1967.

[38] S. Vogel, H. Ney, and C. Tillmann. HMM-based
word alignment in statistical translation. In Pro-
ceedings of the 16th Conference on Computational
Linguistics, volume 2, pages 836–841, 1996.

[39] X. Wang, S. Chen, and S. Jajodia. Tracking anony-
mous peer-to-peer VoIP calls on the Internet. In
Proceedings of the 12th ACM conference on Com-
puter and communications security, pages 81–91,
November 2005.

[40] J. G. Wilpon, L. R. Rabiner, C. H. Lee, and E. R.
Goldman. Automatic recognition of keywords in
unconstrained speech using hidden Markov mod-
els. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 38(11):1870–1878, 1990.

[41] C. V. Wright, L. Ballard, F. Monrose, and G. Mas-
son. Language Identification of Encrypted VoIP
Traffic: Alejandra y Roberto or Alice and Bob?
In Proceedings of the 16th Annual USENIX Secu-
rity Symposium, pages 43–54, Boston, MA, Au-
gust 2007.

[42] L. Zhang, T. Wang, and V. Cuperman. A CELP
variable rate speech codec with low average rate. In
Proceedings of the 1997 IEEE International Con-
ference on Acoustics, Speech, and Signal Process-
ing, volume 2, pages 735–738, April 1997.

