
Building a file system with FSCQ infrastructure

Haogang Chen

Abstract
FSCQ is a file system with a machine-checkable proof (us-
ing the Coq proof assistant [2]) that its implementation meets
its specification, even under crashes. FSCQ provably avoids
bugs that have plagued previous file systems, such as per-
forming disk writes without sufficient barriers or forgetting to
zero out directory blocks. FSCQ built upon the Crash Hoare
Logic (CHL) infrastructure. FSCQ uses FscqLog for crash
recovery, which provides transactional disk abstraction and
all-or-nothing atomicity in case of crash.

1 Overview
As a case study of using the CHL infrastructure, we built and
certified the FSCQ file system. Figure 1 shows the overall
components that make up FSCQ, and Figure 2 shows FSCQ’s
disk layout. FSCQ’s design closely follows the xv6 file system.
The key differences are the lack of multiprocessor support and
the use of a separate bitmap for allocating inodes (instead of
using a particular inode type to represent a free state). The
layout block contains information about where all other parts
of the file system are located on disk and is initialized by mkfs.

Cache FscqLog

Inode Balloc

BFile

Dir DirTree FS

Figure 1: FSCQ components. Arrows represent function calls.

File
data

Block
bitmaps

Inodes Inode
bitmaps

Log
length

Log
header

Log
data

Layout
block

Figure 2: FSCQ on-disk layout.

FSCQ relies on FscqLog [1] for crash recovery. The other
components provide simple implementations of standard file-
system abstractions. The Cache module provides a buffer
cache. Balloc implements a bitmap allocator, used for both
block and inode allocation. Inode implements an inode layer;
the most interesting logic here is combining the direct and
indirect blocks together into a single list of block addresses.
Inode invokes Balloc to allocate indirect blocks. BFile imple-
ments a block-level file interface, exposing to higher levels an

interface where each file is a list of blocks. BFile invokes Bal-
loc to allocate file data blocks. Dir implements directories on
top of block-level files. DirTree combines directories and files
into a hierarchical directory-tree structure; it invokes Balloc
to allocate/deallocate inodes when creating/deleting files or
subdirectories. Finally, FS implements complete system calls
in transactions.

The rest of the paper describes the challenges we faced in
specifying and proving FSCQ and the design patterns that we
came up with for addressing them.

2 Using FscqLog
By building on FscqLog, we can factor out crash recovery.
FSCQ updates the disk only through log_write and wraps
those writes into transactions at the system-call granularity
to achieve crash tolerance. For example, FSCQ wraps each
system call like open, unlink, etc, in a FscqLog transaction,
which allows us to prove that the entire system call is atomic.
That is, we can prove that the modifications a system call
makes to the disk (e.g., allocating a block to grow a file, then
writing that block, and so on) all happen or none happen,
even if the system call fails due to a crash after issuing some
log_writes.

Furthermore, although FscqLogmust deal with the complex-
ity of asynchronous writes, it presents to higher-level software
a simpler synchronous interface, because transactions hide the
asynchrony by providing all-or-nothing atomicity. We were
able to do this because the transaction API exposes an abstract
name space that maps each block to unique block contents,
even though the physical disk maps each block to a set of
outstanding writes. As a result, software written on top of
FscqLog does not have to worry about asynchronous writes.

After a crash, FSCQ’s recovery program reads the layout
block to determine where the log is located, and invokes
FscqLog’s log_recover to bring the disk to a consistent state.

3 Using name spaces
Since transactions take care of crashes, the remaining chal-
lenge lies in specifying the behavior of a file system and prov-
ing that the implementation meets its specification on a reliable
disk. CHL’s name spaces help express predicates about name
spaces at different levels of abstraction. For example, consider
the specification shown in Figure 3 for file_block_write,
which writes to an existing block in a file. This specification
uses separation logic in four different name spaces: the bare
disk (which implements asynchronous writes and matches the
log_rep predicate); the abstract disks inside the transaction,

1



old_state and new_state (which have synchronous writes and
match the file_rep predicate); the name space of files named
by inode number, old_files and new_files; and finally the name
space of file blocks named by offset, old_f.data and new_f.data.
The use of separation logic within each name space allows us
to concisely specify the behavior of file_block_write at all
these levels of abstraction. Furthermore, CHL applies its proof
automation machinery to separation logic in every name space.
This helps developers construct short proofs about higher-level
abstractions.

SPEC file_block_write(inum, blknum, v)
PRE disk: log_rep(ActiveTxn, start_state, old_state)

old_state: file_rep(old_files) ⋆ other_state
old_files: inum 7→ old_f ⋆ other_files
old_f.data: blknum 7→ v0 ⋆ other_blocks

POST disk: log_rep(ActiveTxn, start_state, new_state)
new_state: file_rep(new_files) ⋆ other_state
new_files: inum 7→ new_f ⋆ other_files ∧

new_f.attr = old_f.attr
new_f.data: blknum 7→ v ⋆ other_blocks

CRASH disk: log_rep(ActiveTxn, start_state, any)

Figure 3: Specification for writing to a file.

4 Resource allocation
File systems must implement resource allocation at multiple
levels of abstraction—in particular, allocating disk blocks and
allocating inodes. We built and proved correct a common
allocator in FSCQ. It works by storing a bitmap spanning
several contiguous blocks, with bit i corresponding to whether
object i is available. FSCQ instantiates this allocator for both
disk-block and inode allocation, each with a separate bitmap.

Writing a naïve specification of the allocator is straightfor-
ward: freeing an object adds it to a list of free objects, and
allocating returns one of these objects. The allocator’s repre-
sentation invariant asserts that the free list is correctly encoded
using “one” bits in the on-disk bitmap. However, the caller
of the allocator must prove more complex statements—for
example, that any object obtained from the allocator is not
already in use elsewhere. Re-proving this property from first
principles each time the allocator is used is labor-intensive.

To address this problem, FSCQ’s allocator provides a
free_objects_pred(objlist) predicate that can be applied to
the name space whose resources are being allocated. This
predicate is defined as a sequence of (∃v, i 7→ v) predicates
for each i in objlist, combined using the ⋆ operator. objlist is
typically the allocator’s list of free object IDs, so this predicate
states that every free object ID points to some value.

Using free_objects_pred simplifies reasoning about re-
source allocation, because it can be combined with other pred-
icates about the objects that are currently in use (e.g., disk
blocks used by files), to give a complete description of the
name space in question. The disjoint nature of the ⋆ operator
precisely capture the idea that all objects are either available

(and managed by the allocator) or are in use (and match some
other predicate about the in-use objects).

file_rep(files) := ∃ free_blocks, ∃ inodes,
allocator_rep(free_blocks) ⋆
inode_rep(inodes) ⋆
file_block_rep(inodes, files) ⋆
free_objects_pred(free_blocks)

Figure 4: Representation invariant for FSCQ’s file layer.

For example, Figure 4 shows the representation invariant
for FSCQ’s file layer, which is typically applied to FscqLog’s
abstract disk name space, as shown in Figure 3. The abstract
disk, according to Figure 4, is split up into four disjoint parts:
the allocation bitmap (represented by allocator_rep), the
inode area (represented by inode_rep), file data blocks (rep-
resented by file_block_rep), and free blocks (described by
free_objects_pred). The allocator’s representation invariant
(allocator_rep) connects the on-disk bitmap to the list of
available blocks (free_blocks). The file_block_rep function
combines the inode state in inodes (containing a list of block
addresses for each inode) and the logical file state files to pro-
duce a predicate describing the blocks currently used by all
files. Finally, free_objects_pred asserts that the free blocks
are disjoint from blocks used by the other three predicates.

The same pattern applies to allocating inodes as well. The
only difference is that, in file_rep, the predicate describing
the actual bitmap, allocator_rep, and the predicate describ-
ing the available objects, free_objects_pred, were both ap-
plied to the same name space (the abstract disk). In the case
of inodes, the two predicates are applied to different name
spaces: the bitmap predicate is applied to the abstract disk, but
free_objects_pred is applied to the inode name space.

5 On-disk data structures
Another common task in a file system is to lay out data struc-
tures in disk blocks. For example, this shows up when storing
several inodes in a block; storing directory entries in a file;
storing addresses in the indirect block; and even storing indi-
vidual bits in the allocator bitmap blocks. To factor out this
pattern, we built the Rec library for packing and unpacking
data structures into bit-level representations. We often use this
library to pack multiple fields of a data structure into a single
bit vector (e.g., the bit-level representation of an inode), and
then to pack several of these bit-vectors into one disk block.

Definition inode_type : Rec.type := Rec.RecF ([
("len", Rec.WordF addrlen); (* #blocks *)
("attr", iattr_type); (* file attrs *)
("iptr", Rec.WordF addrlen); (* indirect ptr *)
("blks", Rec.ArrayF 5 (Rec.WordF addrlen))]).

Figure 5: FSCQ’s on-disk inode layout.

For example, Figure 5 shows FSCQ’s on-disk inode struc-
ture, in Coq syntax. The first field is len, storing the number
of blocks in the inode, as a 64-bit integer (Rec.WordF indicates

2



a word field, and addrlen is 64). The other fields are the file’s
attributes (such as the modification time), the indirect block
pointer iptr, and a list of 5 direct block addresses, blks.

The library proves basic theorems, such as the fact that
accesses to different fields are commutative, that reading a
field returns the last write, and that pickling and unpickling are
inverses of each other. As a result, code using these records
does not have to prove low-level facts about layout in general.

6 POSIX specification

FSCQ provides a POSIX-like interface at the top level; the
main differences from POSIX are (i) that FSCQ does not
support hard links, and (ii) that FSCQ does not implement file
descriptors and instead requires naming open files by inode
number. FSCQ relies on the FUSE driver to maintain the
mapping between open file descriptors and inode numbers.

Each system call implemented by FSCQ comes with a
proven specification capturing the expected behavior of the
system call and providing all-or-nothing atomicity with respect
to crashes. Providing precise specifications for file-system op-
erations is important for applications that need to implement
application-level crash consistency on top of a file system [3].

For example, Figure 6 shows FSCQ’s specification for its
most complicated system call, rename, in combination with
FSCQ’s recovery program fs_recover. rename’s precondition
requires that the directory tree is in a consistent state, matching
the tree_rep invariant, and that the caller’s current working
directory inode, cwd_ino, corresponds to some valid path
name in the tree. The postcondition asserts that rename will
either return an error, with the tree unchanged, or succeed,
with the new tree being logically described by the functions
tree_prune, tree_graft, etc. These functions operate on a
logical representation of the directory tree structure, rather
than on low-level disk representations, and are defined in a
few lines of code each. In case of a crash, the state will either
have no effects of rename or will be as if rename had finished.

SPEC rename(cwd_ino, oldpath, newpath)≫ fs_recover
PRE disk: log_rep(NoTxn, start_state)

start_state: tree_rep(old_tree) ∧
find_subtree(old_tree, cwd) = cwd_tree ∧
tree_inum(cwd_tree) = cwd_ino

POST disk: ((ret = (completed, NoErr) ∨ ret = recovered) ∧
log_rep(NoTxn, new_state)) ∨

((ret = (completed, Error) ∨ ret = recovered) ∧
log_rep(NoTxn, start_state))

new_state: tree_rep(new_tree) ∧
mover = find_subtree(cwd_tree, oldpath) ∧
pruned = tree_prune(cwd_tree, oldpath) ∧
grafted = tree_graft(pruned, newpath, mover) ∧
new_tree = update_subtree(old_tree, cwd, grafted)

Figure 6: Specification for rename with recovery.

7 Prototype implementation
We implemented, specified, and proved FSCQ correct using
Coq and the CHL infrastructure. Figure 7 breaks down the
source code of FSCQ and CHL. Proofs are interleaved with
source code. The development effort took several researchers
one year. Checking the proofs takes four hours on a 2 GHz
Intel CPU with 8 GB DRAM.

Component Lines of code

Fixed-width words 2,138
CHL infrastructure 4,835
Proof automation 2,164
On-disk data structures 2,999
Buffer cache 534
FscqLog 3,200
Bitmap allocator 435
Inodes and files 2,302
Directories 4,666
FSCQ’s top-level API 721

Total 23,994

Figure 7: Combined lines of code and proof for FSCQ components.

8 Evaluation
This section answers how difficult is it to build and evolve the
code and proofs for FSCQ.

One metric to evaluate the development effort is the size of
the FSCQ code base, as reported in Figure 7; FSCQ consists
of about 24,000 lines of code. In comparison, the xv6 file
system is about 3,000 lines of C code, so FSCQ is about 8×
larger, but this includes a significant amount of common CHL
infrastructure, including libraries and proof machinery, which
is not FSCQ-specific.

A more interesting question is how much effort is required
to modify FSCQ, after an initial version has been developed
and certified. Does adding a new feature to FSCQ require
re-proving everything, or is the work commensurate with the
scale of the modifications required to support the new feature?
To answer this question, the rest of this section presents several
case studies, where we had to add a significant feature to FSCQ
after the initial design was already complete.

Indirect blocks. Initially, FSCQ supported only direct
blocks. Adding indirect blocks required changing about 1,500
lines of code and proof in the Inode layer, including infras-
tructure changes for reasoning about on-disk objects that span
multiple disk blocks (the inode and its indirect block). We
made almost no changes to code above the Inode layer; the
only exception was BFile, in which we had to fix about 50
lines of proof due to a hard-coded constant bound for the
maximum number of blocks per file.

Buffer cache. We added a buffer cache to FSCQ after we
had already built FscqLog and several layers above it. Since
Coq is a pure functional language, keeping buffer-cache state
required passing the current buffer-cache object to and from

3



all functions. Incorporating the buffer cache required changing
about 300 lines of code and proof in FscqLog, to pass around
the buffer-cache state, to access disk via the buffer cache, and
to reason about disk state in terms of buffer-cache invariants.
We also had to make similar straightforward changes to about
600 lines of code and proof for components above FscqLog.

9 Discussion
Although FSCQ isn’t as complete and high-performance as
today’s high-end file systems, our results demonstrate that this
is largely due to FSCQ’s simple design, and not any inherent
limitations of certified software. Furthermore, the case studies
in §8 indicate that one can improve FSCQ incrementally. In
future work we hope to improve FSCQ’s logging to batch
transactions and to log only metadata; we expect this will bring
FSCQ’s performance closer to ext3 in its standard deployment
mode. The one exception to incremental improvement is
multiprocessor support, which may require global changes,
and is an interesting direction for future research.

References
[1] H. Chen, D. Ziegler, A. Chlipala, M. F. Kaashoek,

E. Kohler, and N. Zeldovich. Specifying crash safety
for storage systems. In Proceedings of the 15th Workshop
on Hot Topics in Operating Systems (HotOS), Kartause
Ittingen, Switzerland, May 2015.

[2] Coq development team. Coq Reference Manual, Version
8.4pl5. INRIA, Oct. 2014. http://coq.inria.fr/
distrib/current/refman/.

[3] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All file systems are not created equal: On the
complexity of crafting crash-consistent applications. In
Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 433–448,
Broomfield, CO, Oct. 2014.

4

http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/

	Overview
	Using FscqLog
	Using name spaces
	Resource allocation
	On-disk data structures
	POSIX specification
	Prototype implementation
	Evaluation
	Discussion

