Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Representing and describing nanomaterials in predictive nanoinformatics

Abstract

Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of safe-and-sustainable-by-design (SSbD). The biological activity of ENMs is closely related to their physicochemical characteristics, changes in these characteristics may therefore cause changes in the ENMs activity. In this sense, a set of physicochemical characteristics (for example, chemical composition, crystal structure, size, shape, surface structure) creates a unique ‘representation’ of a given ENM. The usability of these characteristics or nanomaterial descriptors (nanodescriptors) in nanoinformatics methods such as quantitative structure–activity/property relationship (QSAR/QSPR) models, provides exciting opportunities to optimize ENMs at the design stage by improving their functionality and minimizing unforeseen health/environmental hazards. A computational screening of possible versions of novel ENMs would return optimal nanostructures and manage ('design out') hazardous features at the earliest possible manufacturing step. Safe adoption of ENMs on a vast scale will depend on the successful integration of the entire bulk of nanodescriptors extracted experimentally with data from theoretical and computational models. This Review discusses directions for developing appropriate nanomaterial representations and related nanodescriptors to enhance the reliability of computational modelling utilized in designing safer and more sustainable ENMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spectrum of perspectives on nanomaterials descriptors.
Fig. 2: The concept of ENM representation.

Similar content being viewed by others

References

  1. Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).

    Article  CAS  Google Scholar 

  2. Winkler, D. A. Role of artificial intelligence and machine learning in nanosafety. Small 16, 2001883 (2020).

    Article  CAS  Google Scholar 

  3. Cherkasov, A. et al. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).

    Article  CAS  Google Scholar 

  4. Fourches, D. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano 4, 5703–5712 (2010).

    Article  CAS  Google Scholar 

  5. Puzyn, T. et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 6, 175–178 (2011).

    Article  CAS  Google Scholar 

  6. Jeliazkova, N. et al. Towards FAIR nanosafety data. Nat. Nanotechnol. 16, 644–654 (2021).

    Article  CAS  Google Scholar 

  7. Rybińska-Fryca, A., Mikolajczyk, A. & Puzyn, T. Structure–activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale 12, 20669–20676 (2020).

    Article  Google Scholar 

  8. Marchese Robinson, R. L. et al. How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale 8, 9919–9943 (2016).

    Article  CAS  Google Scholar 

  9. Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. https://doi.org/10.1039/d0cs00098a (2020).

  10. Stone, V. et al. A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today https://doi.org/10.3390/nano10102017 (2020).

  11. Papadiamantis, A. G. et al. Predicting cytotoxicity of metal oxide nanoparticles using Isalos Analytics Platform. Nanomaterials 10, 2493 (2020).

    Article  CAS  Google Scholar 

  12. Puzyn, T. et al. in Recent Advances in Qsar Studies: Methods and Applications Vol. 8 (eds. Puzyn, T. et al.) 127–176 (Springer, 2010).

  13. Shoombuatong, W. et al. in Advances in QSAR Modeling (Ed. Roy, K.) 3–55 (Springer, 2017).

  14. Karakus, C. O. & Winkler, D. A. Overcoming roadblocks in computational roadmaps to the future for safe nanotechnology. Nano Futures 5, 22002 (2021).

    Article  Google Scholar 

  15. Haase, A. & Klaessig, F. (eds) EU US roadmap nanoinformatics 2030. Zenodo https://doi.org/10.5281/zenodo.1486012 (2018).

  16. Mech, A. et al. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology 13, 119–141 (2019).

    Article  CAS  Google Scholar 

  17. Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).

    Article  CAS  Google Scholar 

  18. Regulation (EC) No 1907/2006 of the European Parliament and of the Council (EUR-Lex, 18 December 2006); https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10

  19. Commission Regulation (EU) 2018/1881 (EUR-Lex, 3 December 2018); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1881

  20. Subbotina, J. & Lobaskin, V. Multiscale modeling of bio-nano interactions of zero-valent silver nanoparticles. J. Phys. Chem. B 126, 1301–1314 (2022).

    Article  CAS  Google Scholar 

  21. Kochev, N., Jeliazkova, N. & Tsakovska, I. in Issues in Toxicology (eds. Neagu, D., Richarz, A.-N.) 69–107 (The Royal Society of Chemistry, 2020).

  22. Commission Regulation (EU) 2018/1881 of 3 December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annexes I, III,VI, V (European Commission, 2018).

  23. Guidance on Information Requirements and Chemical Safety Assessment: Appendix R.6-1 for Nanomaterials Applicable to the Guidance on QSARs and Grouping of Chemicals Version 2.0, 3 (ECHA, 2019); https://doi.org/10.2823/273911

  24. Burello, E. Review of (Q)SAR models for regulatory assessment of nanomaterials risks. NanoImpact 8, 48–58 (2017).

    Article  Google Scholar 

  25. Lynch, I., Weiss, C. & Valsami-Jones, E. A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today 9, 266–270 (2014).

    Article  CAS  Google Scholar 

  26. Lynch, I., Afantitis, A., Leonis, G., Melagraki, G. & Valsami-Jones, E. in Advances in QSAR modeling. Challenges and Advances in Computational Chemistry and Physics Vol. 24 (Ed. Roy, K.) 385–424 (Springer, 2017).

  27. Lynch, I. & Lee, R. G. in Innovation, Technology, and Knowledge Management (eds. Murphy, F. et al.) 145–169 (Springer, 2016).

  28. Mülhopt, S. et al. Characterization of nanoparticle batch-to-batch variability. Nanomaterials 8, 311 (2018).

    Article  CAS  Google Scholar 

  29. Yao, Y. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).

    Article  CAS  Google Scholar 

  30. Kluender, E. J. et al. Catalyst discovery through megalibraries of nanomaterials. Proc. Natl Acad. Sci. USA 116, 40–45 (2019).

    Article  CAS  Google Scholar 

  31. Toxic Substances Control Act (US EPA,1979): https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act

  32. TSCA Inventory Status of Nanoscale Substances – General Approach (US EPA, 2008); https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under

  33. Nano-InChI working group; https://www.inchi-trust.org/nanomaterials/

  34. Lynch, I. et al. Can an InChI for nano address the need for a simplified representation of complex nanomaterials across experimental and nanoinformatics studies? Nanomaterials 10, (2020).

  35. Toropova, A. P. & Toropov, A. A. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment. Sci. Total Environ. 823, 153747 (2022).

    Article  CAS  Google Scholar 

  36. Toropov, A. A., Sizochenko, N., Toropova, A. P. & Leszczynski, J. Towards the development of global nano-quantitative structure-property relationship models: zeta potentials of metal oxide nanoparticles. Nanomaterials 8, 243 (2018).

    Article  CAS  Google Scholar 

  37. Mikolajczyk, A. et al. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts. Environ. Sci. Nano 5, 1150–1160 (2018).

    Article  CAS  Google Scholar 

  38. Mikolajczyk, A. et al. A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale 11, 11808–11818 (2019).

    Article  CAS  Google Scholar 

  39. Roy, J., Ojha, P. K. & Roy, K. Risk assessment of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR approach using simple periodic table based descriptors. Nanotoxicology 13, 701–716 (2019).

    Article  CAS  Google Scholar 

  40. Svendsen, C. et al. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat. Nanotechnol. 15, 731–742 (2020).

    Article  CAS  Google Scholar 

  41. Amos, J. D. et al. The NanoInformatics Knowledge Commons: capturing spatial and temporal nanomaterial transformations in diverse systems. NanoImpact 23, 100331 (2021).

    Article  CAS  Google Scholar 

  42. Di Cristo, L. et al. Grouping hypotheses and an integrated approach to testing and assessment of nanomaterials following oral ingestion. Nanomaterials 11, 2623 (2021).

    Article  CAS  Google Scholar 

  43. Afantitis, A., Melagraki, G., Tsoumanis, A., Valsami-Jones, E. & Lynch, I. A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints. Nanotoxicology 12, 1148–1165 (2018).

    Article  CAS  Google Scholar 

  44. Wyrzykowska, E., Mikolajczyk, A., Sikorska, C. & Puzyn, T. Development of a novel in silico model of zeta potential for metal oxide nanoparticles: a nano-QSPR approach. Nanotechnology 27, 1–8 (2016).

    Article  CAS  Google Scholar 

  45. Mikolajczyk, A. et al. Zeta potential for metal oxide nanoparticles: a predictive model developed by a nano-quantitative structure-property relationship approach. Chem. Mater. 27, 2400–2407 (2015).

    Article  CAS  Google Scholar 

  46. Grzelczak, M., Liz-Marzan, L. M. & Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 48, 1342–1361 (2019).

    Article  CAS  Google Scholar 

  47. Liu, Y., Zhu, S., Gu, Z., Chen, C. & Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 69, 31–48 (2022).

    Article  CAS  Google Scholar 

  48. Baer, D. R., Munusamy, P. & Thrall, B. D. Provenance information as a tool for addressing engineered nanoparticle reproducibility challenges. Biointerphases 11, 04B401 (2016).

    Article  CAS  Google Scholar 

  49. Mancardi, G. et al. Multi-scale modelling of aggregation of TiO2 nanoparticle suspensions in water. Nanomaterials 12, 217 (2022).

    Article  CAS  Google Scholar 

  50. Alsharif, S. A., Power, D., Rouse, I. & Lobaskin, V. In silico prediction of protein adsorption energy on titanium dioxide and gold nanoparticles. Nanomaterials 10, 1967 (2020).

    Article  CAS  Google Scholar 

  51. Rouse, I. et al. First principles characterisation of bio–nano interface. Phys. Chem. Chem. Phys. 23, 13473–13482 (2021).

    Article  CAS  Google Scholar 

  52. Rouse, I. & Lobaskin, V. A hard-sphere model of protein corona formation on spherical and cylindrical nanoparticles. Biophys. J. 120, 4457–4471 (2021).

    Article  CAS  Google Scholar 

  53. Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).

    Article  Google Scholar 

  54. Rabanel, J.-M. et al. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? Nanoscale 11, 383–406 (2019).

    Article  CAS  Google Scholar 

  55. Adjei, I. M., Peetla, C. & Labhasetwar, V. Heterogeneity in nanoparticles influences biodistribution and targeting. Nanomedicine 9, 267–278 (2014).

    Article  CAS  Google Scholar 

  56. Appendix for Nanoforms Applicable to the Guidance on Registration and Substance Identification (ECHA, 2019); https://doi.org/10.2823/832485

  57. Caputo, F., Clogston, J., Calzolai, L., Rösslein, M. & Prina-Mello, A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release 299, 31–43 (2019).

    Article  CAS  Google Scholar 

  58. Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: A test study. ACS Nano 5, 7503–7509 (2011).

    Article  CAS  Google Scholar 

  59. Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona determined using a quantitative metabolomics approach: a pilot study. Small 16, 2000295 (2020).

    Article  CAS  Google Scholar 

  60. Yan, X. et al. In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches. Nanoscale 11, 8352–8362 (2019).

    Article  CAS  Google Scholar 

  61. Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nat. Commun. 11, 1–10 (2020).

    Article  CAS  Google Scholar 

  62. Sizochenko, N. et al. From basic physics to mechanisms of toxicity: the ‘liquid drop’ approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale 6, 13986–13993 (2014).

    Article  CAS  Google Scholar 

  63. Sizochenko, N., Jagiello, K., Leszczynski, J. & Puzyn, T. How the ‘liquid drop’ approach could be efficiently applied for quantitative structure-property relationship modeling of nanofluids. J. Phys. Chem. C 119, 25542–25547 (2015).

    Article  CAS  Google Scholar 

  64. Utembe, W., Potgieter, K., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 12, 11 (2015).

    Article  CAS  Google Scholar 

  65. Lin, S. et al. Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small 9, 1776–1785 (2013).

    Article  CAS  Google Scholar 

  66. Kokot, H. et al. Prediction of chronic inflammation for inhaled particles: the impact of material cycling and quarantining in the lung epithelium. Adv. Mater. 32, 2003913 (2020).

    Article  CAS  Google Scholar 

  67. Ellis, L.-J. A. & Lynch, I. Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from analysis of the composition of the acquired protein corona. Environ. Sci. Nano 7, 3343–3359 (2020).

    Article  CAS  Google Scholar 

  68. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  CAS  Google Scholar 

  69. Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    Article  CAS  Google Scholar 

  70. Smythers, A. L. & Hicks, L. M. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg. Top. Life Sci. 5, 203–220 (2021).

    Article  CAS  Google Scholar 

  71. Jagiello, K. et al. Transcriptomics-based and AOP-informed structure-activity relationships to predict pulmonary pathology induced by multiwalled carbon nanotubes. Small 17, 2003465 (2020).

    Article  CAS  Google Scholar 

  72. Myden, A., Hill, E. & Fowkes, A. Using adverse outcome pathways to contextualise (Q)SAR predictions for reproductive toxicity – a case study with aromatase inhibition. Reprod. Toxicol. 108, 43–55 (2022).

    Article  CAS  Google Scholar 

  73. Ellison, C. M., Piechota, P., Madden, J. C., Enoch, S. J. & Cronin, M. T. D. Adverse outcome pathway (AOP) informed modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of action. Environ. Sci. Technol. 50, 3995–4007 (2016).

    Article  CAS  Google Scholar 

  74. Seo, M., Chae, C. H., Lee, Y., Kim, H. R. & Kim, J. Novel QSAR models for molecular initiating event modeling in two intersecting adverse outcome pathways based pulmonary fibrosis prediction for biocidal mixtures. Toxics 9, 59 (2021).

    Article  CAS  Google Scholar 

  75. Halappanavar, S. et al. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part. Fibre Toxicol. 17, 16 (2020).

    Article  Google Scholar 

  76. Toropova, A. P., Toropov, A. A. & Benfenati, E. QSPR as a random event: solubility of fullerenes C[60] and C[70]. Fuller. Nanotub. Carbon Nanostruct. 27, 816–821 (2019).

    Article  CAS  Google Scholar 

  77. Toropov, A. A. & Toropova, A. P. Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions. Chemosphere 139, 18–22 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded via the European Union’s H2020 project NanoSolveIT (grant agreement number 814572), with additional support from the EU H2020 project NanoInformaTIX (grant agreement number 814426) and EU H2020 project PATROLS (grant agreement number 760813). V.L. and J.S. were supported by Science Foundation Ireland grant number 16/IA/4506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Puzyn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Robert Rallo and David Winkler for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyrzykowska, E., Mikolajczyk, A., Lynch, I. et al. Representing and describing nanomaterials in predictive nanoinformatics. Nat. Nanotechnol. 17, 924–932 (2022). https://doi.org/10.1038/s41565-022-01173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01173-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing